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ABSTRACT

This report presents a study of some of the problems that are of
importance in the design of a wire-grid lens of the circularly symmetric
type.

The first problem inveatigated is that of a double-wire square-mesh
grid which will very often be used near the rim of the lens to keep the
grid-to-grid spacing suitably small. Design formulas for the quasi-statiec
equivalent dielectric constant of such grids have been derived, The
validity of these formulas was tested experimentally.

Another problem that was investigated is that of aynthesizing the
index of refraction in a circularly symmetric lens when the index of
refraction is specified in part of the lens and when it is required that
the rays leaving the lens must form a collimated beam in as large an
aperture as possible, Design formulas representing the solution of this
problem have been derived. These formulas are most useful for wire-grid
lens designs because the grid-to-grid spacing in the outer part of the
lens is often determined by mechanical considerations rather than by

electrical considerations.
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1. INTRODUCTION

In recent years, there has been a need for scanning directional
antennas which can be used in the HF frequency band (3 - 30 Mc) for
direction-finding applications., Artificial dielectrics practical and economical
at these frequencies have not existed, however. A most important structure,
which makes possible lens designs in the HF band, is a pair of wire grids
with either square, hexagonal or triangular meshes, A pair of wire grids
can be used for lens designs because the velocity of a wave propagating
between the grids can be controlled by changing the ratio between the grid
spacing and the mesh size. The wire-grid lens as a direction-finding antenna
and problems related to the design of such antennas is the subject of investi-
gation in this report.

A great number of problems have to be solved to realize a wire-grid
lens. Part of these problems have already been solved previously through
support by the United Statcs Air Force under Contracts AF 19(604)-2240 and

AF 19/004'-8059, 1,2.3

The work on these contracts was carried out at
Stanford Research Institute and included a determination of the equivalent
static dielectric constant of a pair of grids with square, hexagonal and
triangular mesh in relation to the grid dimensions. Also investigated were

the dynamic properties of a pair of grids by an experimental method, The
usefulness of the results obtained was demonstrated by testing an experimental

model of a wire-grid lens designed according to the developed design informa-

tion,
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While the investigations of the wire-grid lens undertaken at Stanford
Research Institute led to important basic data needed in a practical design,
many problems. yet have to be solved before a practical wire-grid lens can
be realized, Among these problems are:
(1) An extended theoretical investigation of the dispersion
and anisotropy of a pair of parallel wire grids

(2) An investigation of grid structures whose equivalent
dielectric constant can be controlled continuously,
not only by changing the grid spacing but also be changing
the mesh structure; for example, by changing the effective
mesh size

{3) An investigation of various radiating structures to

provide the required matching between the lens and
free space

(4) An investigation of various feed structures

(5) An investigation of circularly symmetric lenses whose

dielectric constant can be specified in part of the lens

(6) An investigation of the radiation pattern of a wire -grid

lens including the effect of dispersion and anisotropy.

In this report, problems (2) and (5) are treated.

In one of the reports3 referred to above, square-mesh, hexagonal-
mesh and triangular-mesh grids were investigated., As a result of the investiga -

tion, it was found that, for the same mesh area, hexagonal-mesh grids exhibit
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less anisotropy and dispersion than both square-mesh grids and triangular-

mesh grids. From an economical point of view, however, the square mesh

will most often be superior to the hexagonal mesh because a square-mesh

grid is much simpler to construct than a hexagonal-mesh grid. In this

report, therefore, only square-mesh grids are investigated,



2, DOUBLE-WIRE SQUARE-MESH GRIDS

The equivalent dielectric constant of a pair of square-mesh grids
is a function of the ratio between the grid spacing and the mesh size, The
smaller this ratio, the larger the dielectric constant., For very closely
spaced grids, the diclectric constant approaches 2 while it approaches 1
for grids that are far apart relative to the mesh size, At the rim of a
circularly symmetric wirc-grid lens, it is usually necessary that the
equivalent diclectric constant be close to the value 1. This requires the
spacing between the grids to be very large near the rim of the lens. In
many cascs, the required spacing betwcen the rim of the lens turns out
to be larger than practically desirable, To illustrate this, assume that
a dielectric constant of 1.1 is desired at the rim of the lens. For a
square-mesh grid lens with a constant mesh size of 5 feet, which would
be a reasonable mesh size for an HF lens, it is then necessary to use a
spacing of about 35 fecet. This spacing could be reduced by a factor of
between 2 and 3 by rcducing the mesh size by a factor of 2, However,
reducing the mesh size by a factor of 2 increases the cost of the lens
by nearly a factor of 2 and is therefore not a practical solution. A practical
solution to the problem was proposed by Dr. R, L. Tanner, TRG-West,
prior to the contract pcriod: by using a double-wire square-mesh grid,
(see Fig. 1) with varying spacing d betwecen the wires of the double-wire
near the rim of the lens, the effective mesh size can be reduced by a factor
of 2 near the rim of the lens while keeping the mesh size unchanged in the

larger part of the lens,



i

S SN S RN S

-d - Wire radius : 7

. b= Grid spacrig - 2d

Fig. 1 Doublc-Wirc Grid



e T D e Wbl B e e e e

In this section, formulas will be derived for the equivalent dielectric
constant of a pair of double-wire square-mesh grids in dependence of the
ratio between the grid spacing and the mesh size, and of the wire radius
and of the spacing between the wires of the double wire, This represents
the basic information needed for designing a pair of double-wire square-mesh
grids. The dielectric constant will be derived by a method analogous to the
method which was previously used to evaluate the dielectric constant of a
pair of single-wire square-mesh grids.

The equivalent static dielectric constant can be expressed as the
ratio between the capacitance per cell of the grids, and the capacitance per
cell of the grids with one set of parallel wires removed, The capacitance

will be calculated from the variational expression

_ Up)
Jppd

where p is the charge stored per unit length of the wires, and ¢ is the
electrostatic potential produced at the wire surface., When ¢ is the correct
charge distribution, 9 is constant along the wires. Otherwise, ¢ changes on
the wire surface, However, since Eq. (1) is stationary with respect to small
changes of P this equation can provide a reasonably accurate expression
for C even if p is not too close to the correct distribution, Since the capaci-
tance can be easily evaluated for a constant charge density on the wires, and
this charge distribution should be reasonably accurate except near the points

where wires intersect each other (where the charge density drops to a lower



value) we shall now assume that the charge is uniformly distributed on
the wires,

For a constant charge density we can take advantage of the fact
that the electrostatic field in a cell is a sum of two dimensional fields,
Accordingly, we can use the theory of complex functions to find the potential
of the line charges in the cell,

A single cell of the grids is shown in Fig. 2. A cross section of
this cell is shown in Fig, 3A. y= 0 and y = b are magnetic walls at which
the normal derivative of the clectrostatic potential has to be zero, Consider
first the potential produced by the line charges parallel to the z-axis, Assuming
the xy-plane to be a complex z-plane (z = x + iy), transform the strip0 <y <b

to the upper half of a {-plane by the transformation

f=e @)

The magnetic walls y = 0 and y = b thereby transform to the real axis of the

{-plane., The positions of the line charges transform as follows

b-o § c T ed#(-‘%)

ZH-a-u' > _— . (3)
.« b+d f‘f d%(/+-zi)

7, <d+( 5% — f“-' ¢’ e (4)
. b_d -%/7‘ (;f'(/-g)

%, =-a+i 3 — [ =e e (5)
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Fig. 2 Single Cell of a Pair of Double-Wire Grids
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The positions are marked in Fig. 3. Imaging the four line charges in the
upper half of the {-plane in the { ~axis, the system of charges shown in

Fig. 3B is obtained.

Assuming that the charge per unit length of the wires is q, the

complex potential in the { -plane is found to be

5 - | (82500 -5 o,
g G -£2)0*4,")

where “© is the dielectric constant of the medium.

The real potential ¢° in the z-plane is the real part of &. Intro-

ducing Eq. (2) above, we find then

[ S| e

e "SI g1\ Sareifr
(/+e 71 b )(/+e 4 f)

(8)
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The potential at the plane x = 0 mid between the grids (this is an electric

plane because of symmetry) is found from this expression to be

4 Za (9)

?9ramd =T E b

We want the potential at x = 0 to be zero, This can be achieved by subtracting

Eq. (9) from Eq. (8). Doing so, we find

{10)

¢=-ﬁz,//*f-’ ) ) o
o 2T, (/ e-g——z ‘°§’9[/ gT-an)

To evaluate the capacitance according to Eq. (1), we need to know
the electrostatic potential at the wire surface, this is, at a distance ro from

the points 2,072, . According to Eq. (10), this potential is very nearly

constant and equals
?—27’ A ) &szbﬁ(—?—ﬁ//)

YA /'%(ﬁi‘w)
cash ($47) ~eas (1)

(11)
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The total charge on two parallel wires in a cell of the double-wire

grids is 2 qb. The capacitance of one set of parallel wires, introducing

Eq. (11) in Eq. (1), therefore is

gb 27 b

- ——

4
b “é'ﬂb a Vﬁoﬁ/f'%')-w:/fﬂf) (12)
m; b(b 2’/) /‘%({-2/7)

The capacitance of one grid cell with both sets of parallel wires in

0

place can be expressed as

(-4
" Jedl

(13)

where the integration is extended over one-half the length of one of the wires

carrying the charge q per unit length. The potential ¢ equals the sum of
the above constant potential ¢° (see Eq. (11)) and a varying potential ¢l
which is produced by the charge on the set of wires perpendicular to the

set of wires producing the constant potential ¢°. Equation (13) reduces to

. eb
" b+ fpdl

(14)
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4)1 is evaluated along the line z = a - T, + iy (see Fig. 3). Introducing this

value of z in Eq. (8), we find

Bz

| 42,)(,+e-@.f1,-, %f”)

This can be reduced to

4¥e

(]

@ =-—Q—[ZG-#7/‘+57[6056({‘2”)+60$/1;—227/)]
oo [t (27)+cos (42 27)]
-In [6054 (%22//?+(305(%£2ﬂ)]

—Au [rCoSﬁ (%ZF) +(o6 (1#2/79]} (16)
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When this expression is integrated over y fromy= Otoy= !2’- » we find

Jodl = %(a-g) (17)

Introducing this in Eq. (14), the following expression is found for the capaci-

tance of a single cell of a double-wire grid.

47e b

ﬁ? 51«5(5 M)V Cosh (2’_17‘//)(15“;')'527) (18)

]

The equivalent static dielectric constant of a pair of double-wire

square-mesh grids is therefore given by the following expression.

E=2L=2 (19)

where G is defined by

-14-
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cosh( %W/j-m’( 3‘-’—2/7)

/_ @5{?2]) (20)

G=4y 7,6; Stnh (3@2/77)/

It is easily seen from Eq. (19) that ¢ -2 for %* 0, and that
¢ =1 for %-* ©0 ., This was, of course, expected.

The accuracy of Eq. (19) is reasonably good despite the fact that
the assumption of a constant charge density on the wires may not be very
good close to the Points where the grid wires intersect, Yet it may be
important to improve the accuracy of Eq. (19) by considering a charge
distribution that approximates the correct charge distribution better than
the constant charge density. The mathematically simplest charge dig-
tribution which will give an improvement of Eq. (19) is a constant charge
density plus a point charge placed in each intersection point, The optimum
amount of charge to be Placed in each intersection point is such as to make
the capacitance eéXxpreagion stationary with respect to a change of thig charge,
The calculation of the improved Capacitance ig lengthy and trivial and sha]j
be excluded from this report. 1t suffices to mention that the potential of
the point charge was found by expanding the potential in mode functions of

the grid cell, A8 a result of the calculation, the improved dielectric constant

was found to be expressed by



[+ 2 + &*
= £ (21)

“npr [+a4+a,«"

where ¢ is the dielectric constant defined in Eq. (19}, and o is related to the

functions a, and a, by

a-2
oL== 5 (22)
az a:
while a, and az are related to the grid dimensions and to the function G (Eq. 20)
as follows
G+4T
and
b, b L) a
az =2 (24)

G+4T 5

16-
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Equation (21) has been pldtted in Fig. 4 which shows ¢ as a
function of %for various values of % , and for L. 200 which value is
close to the value used in the experiments de sc:ibed below,

To test the validity of Eq. (21), experimental measurements were
made using a rectangular resonator operating in the TEomn modes in which
the top wall of the resonator was replaced by the wire grid, The method
of determining the grid diclcctric constant from the resonant frequencies

of the resonator was described in a previous report, ! The agreement

between theory and experiment was excellent., For a grid resonator with

d

the parameters 22 0,251, N

b = 0,124 and ;-b—= 230, a value of 1,40, was

o

measured for the equivalent dielectric constant. The theoretical value

predicted by Fig., 4 is 1,395, For another grid resonator described by
a d b

the parameters e 0. 6, 5= 0.124 and < = 230, a value of 1,21 was

o
measured for ¢, The theoretical value is 1. 213 according to Fig. 4. It
can, therefore, be concluded that the accuracy of Eq. (21) is very good,

Equation (21) was programmed as a sub-routine for an electronic computer.

This sub-routine will be used in subsequent computations on wire-grid lenses,

-17-
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3 CIRCULARLY SYMMETRIC LENS WITH PARTIALLY
PRESCRIBED INDEX

3.1 General

For many applications of a circularly symmetric lens using an
artificial dielectric for the lens material, the variation of refractive index
required for a Luneburg Lens is not practical. In particular, a maximum
index of refraction less than ﬁ is desirable for a wire-grid lens, One
method by which the maximum index of refraction required to collimate
the rays leaving the front part of the lens (opposite to the feed) can be
made less than '\/?is to place the feed a certain distance away from the
rim of the lens, The lens with the displaced feed can be considered a rim-
fed lens whose index of refraction has been assigned the value 1 in an outer
ring.

In practice, the index of refraction in the outer part of a circularly
symmetric lens will often be determined by mechanical considerations more
than by electrical considerations, and it may not be possible to produce any
prescribed variation of the index of refraction. In view of this and in view
of the above considerations concerning the maximum index of refraction, a
practical design requires the solution of the general problem of synthesizing
a lens whose index of refraction is specified in an outer ring and which is fed
by a point source somewhere in this ring. The purpose of the investigation

in this section is to pursue this problem,

-19-



3.2 The Rays in the Lens

A cross section of one~half of a spherically-symmetric lens and
the path of a ray through this lens is shown in Fig. 5. The index of refraction
is specified in the ring r. <r<r. The point-source feed is placed at a
distance T from the lens center, r < re < T We want to determine the
index of refraction in the inner core of the lens (r < ta) such that the rays
leaving the front part of the lens (opposite to the feed) are collimated in as
large an aperture as possible, To do so, we shall first establish the general
relation between the radially varying index of refraction n(r), the ray angle }
and the angle \po of the turning point, that is, that point of the ray which is
closest to the center of the lens (see Fig. 5).

The rays in the lens move along paths obeying Snell's law which

can be written

nrsthy =x (25)

where X is a constant characteristic of the particular ray. & is different

for different rays and is related to the ray angle J as follows
X =N7 S (26)
p 7y

where n, is the index of refraction at the point where the feed is placed,
9C may also be related to the index of refraction n, and radius L at the

turning point as follows,

-20-
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xX=nr (27)

The polar angle of the turning point is most easily found by

considering the differential form of Snell's law

nre g%
Vi+(r dof

where the upper sign is used when the ray approaches the turning point while

=X (28)

the lower sign is used when the ray recedes away from the turning point.

When Eq. (28) is solved with respect to -3-3-, we find

- x

+ r-lf——ﬂ,r‘.xz (29)

Integrating with respect to r, we find the following expression for the polar

S

angle ¢

ls
ar
= I
? ;./7& rﬂiri-x’ (30)

-22-
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when the ray is approaching the turning point. When the ray is receding

from the turning point, the following expression should be used for ¢

r

dr a1
P = %(x)+x 77”” (31)

where ¢° is the polar angle of the turning point

%

. Ar
px)= /Cr/ = (32)

ny'-2xt

According to Eq. (31), the polar angle @ of the point where the ray

leaves the lens is

P = ,2%(3:)-#2:/ Yo-r-;__ (33)

The angle 6 between the direction of the ray after leaving the lens and the

principal direction of the lens according to Eq. (25) and Fig. 5 is defined

by the relation

7, s [T-(F+6)] = x (34)

«23-



from which it follows that
. SX
6=7T-@ - /47‘6‘51/](‘7';—) (35)

The above formulas are useful for determining ray paths when the
.ndex of refraction is specified throughout the lens. These formulas form
he basis for synthesizing a lens whose index of refraction is unknown in

sart of the lens and for calculating radiation patterns,

«24-



3.3 Synthesis of Lens

We shall now consider the synthesis problem: given the index of
refraction for r <r<r, to find the index in the inner region 0 < r < r
such that those rays that pass through the inner region form a collimated
beam in as large an aperture as possible upon leaving the lens, To solve
this problem, consider Eq. (32), This is an integral equation from which
the index n can be found when ¢° is given as a function of 3¢ ., According

to Eq. (26), ¢>° is defined in the range 0 < 7 <n A certain part of

£ rf.
this range belongs to rays that do not penctrate the inner region 0 < r < r
of the lens, The value of ¢° (2C) in this part of the total range of 2C can
be calculated from the given index of refraction for r > T by Eq. (32).
However, some care has to be exercised in the use of Eq. (32) if nr is
not a monotonic function of r,

If nr is a monotonic function of r (see Fig, 6A), Eq. (32) can be
used with no difficulties. The rays that do not penetrate the inner region
0O<r« r of the lens are in that case those for which 7C has a value in

the range n T, < 7 <n Physically, the monotonic variation of nr

£°f
with r implies that one, and always one, ray passes through every point
in the lens,

Assume now that nr is not a monotonic function of r, as in the
examples with two extrema of the rn-curve shown in Figs., 6B and 6C,

In these figures, r' is the radius for which nr assumes the minimum

while r' < r" is the radius for which nr has the same value as for r = r'',

25~
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Consider first Fig, 6B where n T is the lowest value of nr for r > ro.
In that case ¥, in Eq. (32} cannot be allowed to have any value in the range

from r tor,, but the interval r' < r, < r'" must be excluded from that range,
a

£
Since r < r' < r", the rays that do not penetrate the inner region 0 < r < r
of the lens are again those for which 2L has a value in the range n T, < X
<n r. The physical consequence of the type of variation of nr shown

in Fig, 6B is that a ray will not pass through any point of the lens. This

is illustrated in Fig., 7. This variation is seen to have the effect of producing
regions of ''darkness' in the lens, This may be a desirable feature for many

applications,

In Fig. 6C where r' < T, < r'", the rays that do not penetrate the
inner reg'ion 0<r« ra of the lens are those for which A has a value in the
range n''r'"' < X < ng T In contrast to the nr-curves in Figs. 6A and 6B,
the nr-curve in Fig, 6C is not allowed because it makes it impossible to
determine the refraction index in the region 0 < r < ra. To solve Eq. (32)
for the index of refraction in the inner part of the lens from a prescribed
variation of 4)0 with 3C for the rays that penetrate the inner part of the lens,

assume that nr, is the smallest value of nr for r > T The range of 3¢

for the rays penetrating the region 0 < r < s is therefore

0xx<m§ (36)

-27-
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Now separate from the integral in Eq. (32) the part for r > r

which is known. We find then

Y (x) = x/T (37)

wr—x

where

Wwix)= ¢ lx) - 76/;;"‘“"‘* (38)

'y -2e®

is a known function of 3¢ since ¢°( 3¢) will be required to be specified such
that all rays passing through the inner part 0 < r < r, of the lens form a
collimated beam upon leaving the lens, Obviously, ¢°(%) is therefore found

from Eq. (35) by putting 8 = 0, Introducing Eq. (33) in Eq, (35), we find

/4
- Adr
()= ~L Aresin(% -1/————-———— (39)
% % - (’c') zr TVnr -2t
%

Let us introduce this in Eq. (38), 4;0(::) is then found to be given by

% %
plx s--i/ﬁcm(") %‘/ -x —————————f{f -
z TVnr"-2

(40)

-29-



The solution of Eq. (37) has been found by Ka.y4 and Morga,n5 for

the case r. = 1 and n‘ ra = 1. The solution for this case is given by

(41)

where § is a parameter defined by
S=nr . (42)
These two equations serve to determine n and r,

The solution of Eq. (37) can be deduced from Eq. (41) by trans-

forming Eq. (37) as follows

/
747;]12[(_”_222 x)‘ (@3
KA a %)(5) 7,
%

Obviously, this transformation normalizes both r and nr to the value 1.
Accordingly, the solution of Eq. (37) can be deduced from Eq. (41) by

replacing r by r—r , n by 'nl and ¢ by x/nar.. Substituting also
a a

£ = g/na T, we find
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N
L
»‘1]&«\
4\

and

T= é;— (45)

The method used to derive Eq. (41) restricts the solution for nr to be a
monotonic function of r.

For the evaluation of Eq. (44), we have to solve the integrals in
Eq. (40)., These integrals cannot be reduced to a closed form except in
very special cases, among these the case where n is constant. To avoid
having to integrate numerically first over r according to Eq. (40), and then
over X according to Eq. (44), we shall assume that the region r <r< T
of the lens consists of a large number of layers, each layer with a constant
index of refraction, The resulting stepped index curve can be made to
approximate the actual continuous index curve as well as desired by choosing

a sufficiently large number of layers. Assume that the region r <r<r

f
consists of Pl layers with refraction indices n”, an' nl3' ----- . nl' Pl
and with radii r“. rlZ’ ru, ----- ' rl' p]” where ru < x'lz €= noa
"1.p1+1'



We {ind then

7, P 7. ¢/
j Ar : ff dr
x 'r 2 > = x r n ‘lrt

7; nrT -3¢ P./ 1:’ Ip

'v'

A
=) [Arcsh( —Z;') = Aresin / 52{___ )]

p! ”/,a p Ip 7;,,# {46)

Assume similarly that the region r_ < r < r consists of P_ layers

f c 2
with indices n&l' n&Z' n23, ----- , nz‘ PZ and with radii r“, rZZ' r23,
----- . rz, pz“ where er < rz2 < r23 €= ~=Z rZ, PZ“. We find then
analogously

xfﬂ,ﬁ,_- Z_ [/)rcm(

' V4
) "/47(5//7 (——"—_)] 147)
/a nr

P 2,pt/

Now introducing Eqs. (46; and (47) in Eq. (40}, and Eq. {40} in

Eq. {41), and introducing also the integral function

) 4
Arcsfh(ggf—)
I(j,a) X)’f_/ W dx g (48)
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which has been expressed as a power series in Appendix A, wé 1i4¢

§
n= '7:'8 (49)

where

{
—
=
:m\

S
~
‘S
>
——

|

I~

,
(EXMMTTY]

&
-i.;l[](f,nyyz},%;)-f(f, 71#7;/,,; %7;)]

(50)

The numerical evaluation of the integral in Eq. (48) is discussed

in Appendix A,
Equation (49) was programmed for an electronic computer, The
index of refraction in this formula has been assumed to be specified in the

outer part r, <r«< T, of the lens. Since the formulas derived above will be
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used to design a wire-grid lens, instead we shall specify the grid-to-grid
spacing, the mesh size, and the spacing between the double wires in a double -
wire square mesh, The index of refraction for r <r< r_was then evaluated
by a sub-routine program for Eq. (21). The result of the computations is a
table of the index of refraction versus r according to Eq. (49). Use of
Eq. (21) then gives the grid-to-grid spacing in the entire lens.

An example of the use of the computer program for synthesizing
a wire-grid lens shall be presented. Assume that the lens is divided into
four regions as illustrated in Fig, 8, In the region 0 < r < T the index is

unknown, The mesh size used in this region is b, In the region r,oor<r,

a double-wire grid is used with linearly tapered spacing between the double
wires. The double-wire grid provides a continuous ''match'' between a single-

wire grid with mesh size b and a single-wire grid with mesh size % In the

regions r,<r< T and ro<rc r.a single -wire grid with mesh size gis used,

The point source feed is placed at r = r The values chosen in this example

‘.
forr , r , r and r , and for the values of iamcl d at these radii are shown
a b f c b a

in Fig. 8. Both &

b and % are assumed to vary linearly with r (except, of course,

. . a . .
in the region 0 < r < r, where b i® unknown), The wire radius was chosen such

that -r-lz- = 1000,
o
The results of the synthesis for the lens example shown in Fig. 8 are
plotted in Figs. 9 and 10, Figure 9 shows the nr-product and Fig, 10 the
index of refraction for the entire lens. From Fig. 10 it will be observed that
the index rises quite sharply near r = r = 0.75. As a result of this, the nr-

curve in Fig, 9 exhibits a minimum for r > T It was, therefore, necessary

to further specify a constant index in a narrow ring r' <r< r. such that the
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Example of Circularly Symmetric Wire-Grid Lens
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value of nr at r = r' would be the smallest value of nr for r > r'. This
condition was satisfied for r' = 0, 745 in the example considered., The

computer is programmed to introduce the extra ring with a constant index

of refraction when necessary,
The validity of the computer program for synthesizing a circularly

symmetric lens was checked by synthesizing the well-known Luneburg Lens.
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4. CONCLUSIONS

The investigation of a double-wire, including the special case of
single-wire, square-mesh grid lens whose shape and mesh structure is
specified in an outer ring of the lens, has led to a computer program which
determines the grid shape in the entire lens such that the rays leaving the

lens form a collimated beam in as large an aperture as possible,
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APPENDIX A

For synthesizing a circularly-symmetric lens whose refractive

index is specified in part of the lens, we need to evaluate the following

integral

/xﬂnv’r (ﬁ)
- wirs a
I(fa x) ey Ax

This integral cannot be expressed by known functions, and a numerical evalua-

tion, when high accuracy is required, can become quite time consuming since

the integrand has a singularity at the lower integration limit. Fortunately,

however, the difference I(¢,a_,x) - I(£,a ,x) between two integrals with

2 1

slightly different values of a enters the synthesis problem many more times
than the single integral. The integral difference can be evaluated very fast
and with high accuracy by expanding the integral in a power series of a.

Expanding from a = a, where

a+Q
= L2
a 7

we find then

16t ¢, 1)~ I (.0, %)= df(f %Y (4 g /dirm,,x)
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Most often, terms of higher order than 3 in a, - a can be neglected.

The first- and third-order derivatives of I can be evaluated in

closed form., Differentiating I with respect to a, we find

' dI(Fax) _ / xdx
da W=t Var'

=-z—/a—[-§ -/?rcs/fl(/"z'fz__—";T ]

Differentiating this expression another two times, the following expression

_f‘)
'lfz

at 14 12
‘@ @ x)’/*(’“ +7ra-éfx *““)]

is found for the third-order derivative

d ]X;A»X) - E/;[—zl+ L Aresin
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CATALOGUE FILE CARD

when it is required that the rays leaving the lens musat
form & collimated beam in as large an aperinre as possible.
Derived design formulas representing the solution of this
problem are most useful for wire-grid lens designs because
the grid-to-grid spacing in the outer part of the lens is
often determined by mechanical rather than by electrical
ideratioas.

when it is required that the rays leaving the lens must
form a collimated beam in as large an aperture as possible|

erived design formulas representing the solution of this
problem are most useful for wire-grid lens designs becausef
he grid-to-grid spacing in the outer part of the leas is
often determined by mechanical rather than by electrical
lconsiderations.

hen it is required that the rays leaving the lens must

orm a collimated beam in as large an aperture as possible.

erived design formulas representing the solution of this
blem are most useful for wire-grid lens designs because

e grid-to-grid spacing in the outer part of the lens is

ften determined by mechanical rather than by electrical

considerations.

when it is required that the rays leaving the leas must
form a collimated beam in as large an aperture as possible
erived design formulas representing the solution of this
problem are most useful for wire-grid lens designs voon:u%
khe grid-to-grid spacing in the outer part of the lens is
often determined by mechanical rather than by electrical
iconsiderations.




